Cardiac Electrophysiology for the USMLE Step One Exam

Cardiology Overview Patients

Matthew McGuiness, MD, MEd

Howard J. Sachs, MD

Associate Professor of Medicine

University of Massachusetts Medical School

www.12DaysinMarch.com; Season III

E-mail: Howard@12daysinmarch.com

Cardiology Overview Patients

Matthew McGuiness, MD, MEd

Outline

- * Cardiac electro-mechanical function
 - * Electrophysiology and myocyte function
 - * Pump function and hemodynamics
- Cardiac rhythm disturbances and antiarrhythmic drugs

Two Major Elements of Pump Function

- Electrical system
 - * Generates spontaneous activation
 - * Rapidly disperses activation wavefront
- * Mechanical system (myocytes)

Cardiac Action Potential

Cardiac Action Potential

Putting it together...

Intrinsic conduction system of the heart

Myocyte Structure

Myocyte Contraction

Myocyte Contraction

(a) Myosin-binding sites blocked

(b) Myosin-binding sites exposed

Myocyte Contraction A band I band A band H zone H zone Z line Z line Z line 00000000 Myosin myofilament Sarcomere Actin myofilament

Myocyte Contraction

Cardiac Rhythm Disturbances and Antiarrhythmic Drugs

Context

- * Complete understanding of rhythm identification is not necessary
- * Knowledge of rhythm-related pathophysiology and pharmacology will be very useful

Foundation

- * (Sinus Node)
- * Atrial depolarization = P
- (AV node, His Purkinje, left and right bundles)
- * Ventricular depolarization= QRS
- * (Atrial repolarization)
- * Ventricular repolarization = T

Cardiac Arrhythmias

Bradyarrhythmias

- * Heart rate is too slow
 - * Impulse generation (sinus bradycardia)
 - * Impulse conduction (complete AV block)
- * Common causes: age-related degeneration, drug effects, hypothyroidism, Lyme disease
- * Treatment: reverse underlying cause or pacemaker

Complete Heart Block

Tachyarrhythmias

- * Heart rate is too fast
- * Two main mechanisms
 - * Automatic arrhythmias
 - * Re-entrant arrhythmias

Automatic Tachycardias

- * Focal area within the heart depolarizing at a rapid rate
- * Most common example: sinus tachycardia!
- * Atrial tachycardia, rare forms of ventricular tachycardia
- * Common causes of AT: systemic illness, hyperthyroidism, lung disease, atrial dilation
- * Treatment: β or Ca⁺⁺ blockers, ablation

Re-entry

- * Complicated but important concept
- * Underlies how many arrhythmias are treated, including the use of antiarrhythmic drugs
- * Re-entrant arrhythmias also called <u>circus movement</u> <u>tachycardias</u>

Re-entry

- * Common entry point
- * Two potential pathways with different:
 - * Conduction speeds
 - * Refractory periods
- * Common exit point
- * This loop can exist in many locations within the heart.

Re-entry

Baseline

Tachycardia

Examples of Re-entry Rhythms

- * Wolf-Parkinson-White tachycardia
- * AV nodal re-entrant tachycardia
- * Atrial flutter
- * Ventricular tachycardia (most common forms)
- * Pacemaker-mediated tachycardia
- * Atrial fibrillation (certain aspects)

Treatment of Re-entry Rhythms

- * Antiarrhythmic drugs work by changing the electrical properties of the re-entry loop, so that circular electrical activity can no longer be sustained
- * Ablation can physical destroy part of the re-entry loop.

Anti-arrhythmic Drugs

- * True AADs alter the myocyte action potential by blocking Na⁺ or K⁺ channels
- Though drug mechanisms often described 'purely,' many drugs interact with multiple receptors
- * AADs can actually cause arrhythmias!
 - * Drugs that have K⁺ channel activity will prolong repolarization (QT interval) and may lead to TdP
 - * "Bystander" re-entry loops, usually in the LV, may become malignant

Vaughan Williams Classifications

```
* Class I – Na<sup>+</sup> channel blockers
```

- * Class II β blockers
- * Class III K⁺ channel blockers
- * Class IV Ca⁺⁺ blockers
- * Class V misc

Antiarrhythmic drugs worth knowing – for boards and career!

Class III

 Δ QT interval

Antiarrhythmics: Class I (Na)

P

r

0

L

i

F

i

C

1a. Procainamide Quinidine Disopyramide

Antiarrhythmics: Class I (Na)

P r o 1c. Flecainide Propafanone

'Use Dependence'

- •Slowly dissociates from Na channel during diastole.
- •At faster HR (less diastole), less time to dissociate, with enhanced Na channel blocking effects.
- •QRS widens, but AP duration remains the same

P 0

1a. Procainamide

Anti-histone Aby

Slow acetylators

Procainamide

- * Class 1A agent
- * Metabolized to NAPA, with longer half life
- * Modestly effective, modestly pro-arrhythmic
- * Associated with drug-induced lupus and anti-histone

ab production

* Limited contemporary clinical use

Lidocaine & Mexilitine

- * Class 1B agents
- * Safe and effective for ventricular dysrhythmias, including in the context of myocardial ischemia
- * Limited contemporary clinical use

Flecainide & Propafenone

- * Class 1 C agents
- * Predominantly used for atrial fibrillation
- * Demonstrates phenomenon of "use dependence"
 - * Dissociation from Na channels is time-dependent
 - * Therefore, less dissociation at higher heart rates
 - * With tachycardia, may see more pronounced drug effects (i.e., QRS widening)

Sotalol & Dofetilide

Class III – sotalol also with significant beta blocking effects

Class III drugs

- Effective for atrial (dofetilide) and atrial and ventricular dysrhythmias (sotalol)
- * Demonstrates "reverse use dependence"
 - * Easier to remember that QT prolongation is expected, and will be more pronounced at slower heart rates
- * Renal clearance

Amiodarone

- * Class III, but multiple mechanisms of action
- * Remarkably effective drug for many dysrhythmias
- * Prolongs QT interval, but low incidence of TdP
- * Multiple potential toxicities, especially with higher cumulative doses

Adenosine

- * Miscellaneous agent
- * Activates A1 receptor in heart, causing transient (seconds) complete AV block
- * MoA: excessive K⁺ efflux in the AVN → cell hyperpolarization (but Na⁺ and Ca⁺ currents likely also involved)
- * Also has vasodilatory properties, especially in coronary circulation
- * How might such action be useful clinically?

Adenosine

- * Therapeutically
- * Diagnostically

Summary

- * Arrhythmias can be categorized as slow or fast
- * Tachycardias may have an automatic or re-entry mechanism
- * Principle of re-entry underlies the pathogenesis and treatment of many dysrhythmias
- * Antiarrhythmic drugs can be safe and effective, but carry risks, and must be used cautiously

Cardiac Electrophysiology for the USMLE Step One Exam

Cardiology Overview Patients

Matthew McGuiness, MD, MEd

Howard J. Sachs, MD

Associate Professor of Medicine

University of Massachusetts Medical School

www.12DaysinMarch.com; Season III

E-mail: Howard@12daysinmarch.com