Cardiac Electrophysiology for the USMLE Step One Exam ## Cardiology Overview Patients Matthew McGuiness, MD, MEd Howard J. Sachs, MD Associate Professor of Medicine University of Massachusetts Medical School www.12DaysinMarch.com; Season III E-mail: Howard@12daysinmarch.com # Cardiology Overview Patients Matthew McGuiness, MD, MEd #### Outline - * Cardiac electro-mechanical function - * Electrophysiology and myocyte function - * Pump function and hemodynamics - Cardiac rhythm disturbances and antiarrhythmic drugs ## Two Major Elements of Pump Function - Electrical system - * Generates spontaneous activation - * Rapidly disperses activation wavefront - * Mechanical system (myocytes) #### Cardiac Action Potential #### Cardiac Action Potential ## Putting it together... Intrinsic conduction system of the heart ### Myocyte Structure ### **Myocyte Contraction** ### **Myocyte Contraction** (a) Myosin-binding sites blocked (b) Myosin-binding sites exposed #### **Myocyte Contraction** A band I band A band H zone H zone Z line Z line Z line 00000000 Myosin myofilament Sarcomere Actin myofilament ### **Myocyte Contraction** ## Cardiac Rhythm Disturbances and Antiarrhythmic Drugs #### Context - * Complete understanding of rhythm identification is not necessary - * Knowledge of rhythm-related pathophysiology and pharmacology will be very useful #### Foundation - * (Sinus Node) - * Atrial depolarization = P - (AV node, His Purkinje, left and right bundles) - * Ventricular depolarization= QRS - * (Atrial repolarization) - * Ventricular repolarization = T ## Cardiac Arrhythmias ### Bradyarrhythmias - * Heart rate is too slow - * Impulse generation (sinus bradycardia) - * Impulse conduction (complete AV block) - * Common causes: age-related degeneration, drug effects, hypothyroidism, Lyme disease - * Treatment: reverse underlying cause or pacemaker ## Complete Heart Block ## Tachyarrhythmias - * Heart rate is too fast - * Two main mechanisms - * Automatic arrhythmias - * Re-entrant arrhythmias #### Automatic Tachycardias - * Focal area within the heart depolarizing at a rapid rate - * Most common example: sinus tachycardia! - * Atrial tachycardia, rare forms of ventricular tachycardia - * Common causes of AT: systemic illness, hyperthyroidism, lung disease, atrial dilation - * Treatment: β or Ca⁺⁺ blockers, ablation #### Re-entry - * Complicated but important concept - * Underlies how many arrhythmias are treated, including the use of antiarrhythmic drugs - * Re-entrant arrhythmias also called <u>circus movement</u> <u>tachycardias</u> #### Re-entry - * Common entry point - * Two potential pathways with different: - * Conduction speeds - * Refractory periods - * Common exit point - * This loop can exist in many locations within the heart. ## Re-entry Baseline #### Tachycardia #### Examples of Re-entry Rhythms - * Wolf-Parkinson-White tachycardia - * AV nodal re-entrant tachycardia - * Atrial flutter - * Ventricular tachycardia (most common forms) - * Pacemaker-mediated tachycardia - * Atrial fibrillation (certain aspects) #### Treatment of Re-entry Rhythms - * Antiarrhythmic drugs work by changing the electrical properties of the re-entry loop, so that circular electrical activity can no longer be sustained - * Ablation can physical destroy part of the re-entry loop. ### Anti-arrhythmic Drugs - * True AADs alter the myocyte action potential by blocking Na⁺ or K⁺ channels - Though drug mechanisms often described 'purely,' many drugs interact with multiple receptors - * AADs can actually cause arrhythmias! - * Drugs that have K⁺ channel activity will prolong repolarization (QT interval) and may lead to TdP - * "Bystander" re-entry loops, usually in the LV, may become malignant ### Vaughan Williams Classifications ``` * Class I – Na⁺ channel blockers ``` - * Class II β blockers - * Class III K⁺ channel blockers - * Class IV Ca⁺⁺ blockers - * Class V misc ## Antiarrhythmic drugs worth knowing – for boards and career! Class III Δ QT interval #### Antiarrhythmics: Class I (Na) P r 0 L i F i C 1a. Procainamide Quinidine Disopyramide #### Antiarrhythmics: Class I (Na) P r o 1c. Flecainide Propafanone #### 'Use Dependence' - •Slowly dissociates from Na channel during diastole. - •At faster HR (less diastole), less time to dissociate, with enhanced Na channel blocking effects. - •QRS widens, but AP duration remains the same P 0 1a. Procainamide Anti-histone Aby Slow acetylators #### Procainamide - * Class 1A agent - * Metabolized to NAPA, with longer half life - * Modestly effective, modestly pro-arrhythmic - * Associated with drug-induced lupus and anti-histone ab production * Limited contemporary clinical use #### Lidocaine & Mexilitine - * Class 1B agents - * Safe and effective for ventricular dysrhythmias, including in the context of myocardial ischemia - * Limited contemporary clinical use # Flecainide & Propafenone - * Class 1 C agents - * Predominantly used for atrial fibrillation - * Demonstrates phenomenon of "use dependence" - * Dissociation from Na channels is time-dependent - * Therefore, less dissociation at higher heart rates - * With tachycardia, may see more pronounced drug effects (i.e., QRS widening) #### Sotalol & Dofetilide Class III – sotalol also with significant beta blocking effects Class III drugs - Effective for atrial (dofetilide) and atrial and ventricular dysrhythmias (sotalol) - * Demonstrates "reverse use dependence" - * Easier to remember that QT prolongation is expected, and will be more pronounced at slower heart rates - * Renal clearance #### Amiodarone - * Class III, but multiple mechanisms of action - * Remarkably effective drug for many dysrhythmias - * Prolongs QT interval, but low incidence of TdP - * Multiple potential toxicities, especially with higher cumulative doses #### Adenosine - * Miscellaneous agent - * Activates A1 receptor in heart, causing transient (seconds) complete AV block - * MoA: excessive K⁺ efflux in the AVN → cell hyperpolarization (but Na⁺ and Ca⁺ currents likely also involved) - * Also has vasodilatory properties, especially in coronary circulation - * How might such action be useful clinically? # Adenosine - * Therapeutically - * Diagnostically ### Summary - * Arrhythmias can be categorized as slow or fast - * Tachycardias may have an automatic or re-entry mechanism - * Principle of re-entry underlies the pathogenesis and treatment of many dysrhythmias - * Antiarrhythmic drugs can be safe and effective, but carry risks, and must be used cautiously # Cardiac Electrophysiology for the USMLE Step One Exam # Cardiology Overview Patients Matthew McGuiness, MD, MEd Howard J. Sachs, MD Associate Professor of Medicine University of Massachusetts Medical School www.12DaysinMarch.com; Season III E-mail: Howard@12daysinmarch.com