Part II. Nephrotic Disorders for USMLE Step One

Howard J. Sachs, MD

Associate Professor of Medicine UMass Medical School <u>www.12daysinmarch.com</u> E-mail: Howard@12daysinmarch.com the Language of the Nephrotic Syndromes (Minimal Change, FSGS, Membranous) Proteinuria >3.5 gms/day

<u>Thrombosis</u> Loss: *ATIII, plasminogen, C, S* Gain: *fibrinogen*

- Frothy urine
- Lipiduria: Fatty cast, Oval Fat Body, Maltese Cross

Pathology derivatives

These patients <u>might have</u>:

- Edema
- Proteinuria (<3 gm)
- Hyperlipidemia

These patients <u>might have</u>:

- Microscopic hematuria
- HTN
- Azotemia

Disease Features

Nephritic

Nephrotic

- 1. Oliguria/Azotemia
- 2. Hematuria
 - Color: Cola or Rust
 - RBC casts/Dysmorphic RBCs
- 3. HTN ('mild')
- 4. Edema/Proteinuria (mild/trace)

Proteinuria (>3.5 gm/day)

- 1. Frothy urine (lipoproteins)
- 2. Hypoalbuminemia
- 3. Edema
- 4. Hypercoagulability
- 5. Hyperlipidemia/-uria

<u>Context</u>

- Clinical identifiers
- Pathologic features
- Light/Electron Microscopy
- Immunofluoresence

Summary

• Unique Features

Minimal Change (MCD) FSGS Membranous (MN)

Disease Features

Nephritic

Nephrotic

- 1. Oliguria/Azotemia
- 2. Hematuria
 - Color: Cola or Rust
 - RBC casts/Dysmorphic RBCs
- 3. HTN ('mild')
- 4. Edema/Proteinuria (mild/trace)

- Proteinuria (>3.5 gm/day)
- 1. Frothy urine (lipoproteins)
- 2. Hypoalbuminemia
- 3. Edema
- 4. Hypercoagulability
- 5. Hyperlipidemia/-uria

<u>Context</u>

- Clinical identifiers
- Pathologic features
- Light/Electron Microscopy
- Immunofluoresence

Summary

• Unique Features

<u>Overlap Syndromes</u> :	Minimal Change (MCD)	<u>Systemic Disorders</u> :
MPGN	FSGS	DM
SLE	Membranous (MN)	Amyloid

Kids >>> Adults

Minimal Change

Kids >>> Adults

Hodgkin Lymphoma

Reed-Sternberg

Triggers > Cytokine Release

Atopy

Infection

Most common in Hispanics/African-Americans FSGS *will be identified by one of these risk factors*

* FoKal SeGmental GlomeruloSclerosis (FSGS)

*

* FoKal SeGmental GlomeruloSclerosis (FSGS)

Most common in Hispanics/African-Americans FSGS *will be identified by one of these risk factors*

* FoKal SeGmental GlomeruloSclerosis (FSGS)

*

Most common in Hispanics/African-Americans FSGS *will be identified by one of these risk factors*

* FoKal SeGmental GlomeruloSclerosis (FSGS)

*

* FoKal SeGmental GlomeruloSclerosis (FSGS)

Dipstick grading	Semi-quantitative urine protein (mg/dl)	
Negative/nil	0	
Trace	15-30	
1+	30-100	
2+	100-300	
3+	300-1000	
4+	>1000	

Patient with h/o IVDU presents with edema. WBC 2.4; CD4 count 150 **4+ protein on urine dipstick** What is most likely cause for his presentation?

Antigens/IC deposit in the Sub-Epithelial portion of the GBM

Minimal Change

Membranous

Indolent Onset

<u>Primary</u> Autoimmune (PLA₂ Receptor)

<u>Secondary</u> HBSAg, Tumor, SLE

Membranous

Neoplasm

Primary Membranous Nephropathy (75%)

Nephrotic Syndrome

Minimal Change

Membranous

Normal Histology

- 1. Loss of charge barrier
- 2. Albumin translocation + selective proteinuria

EM: Foot Process Effacement

Be familiar with these two derivatives

Minimal Change

Normal Histology

FSGS

Pathoma: 'picture what would happen to Minimal Change if it progressed...'

Loss of charge barrier Albumin translocation → selective proteinuria

Foot Process Effacement

FoKal SeGmental GlomeruloSclerosis

FoKal: part of the kidney SeGmental: part of the glomerulus

Membranous

Nephrotic Syndrome and No Immunofluorescence

Minimal Change

Membranous

Nephrotic Syndrome and No Immunofluorescence

Membranous Nephropathy

Electron Microscopy:

- Not pictured but the foot process is damaged > effacement/loss of charge barrier
- GBM is thickened (IC/'Planted Ag')
- Sub-epithelial location = repair of GBM by Podocyte AND non-proliferative

Membranous Nephropathy

Electron Microscopy:

- Sub-epithelial location = repair of GBM by Podocyte
- 'Repair' = ECM and collagen; appears as 'spikes' between Ag/IC ('dome')

Membranous Nephropathy

<u>Immunofluorescence</u> Granular appearance with IgG and C3

<u>Primary MN:</u> Subepithelial portion of GBM Foot processes are injured (*effaced*) with resultant damage to the slit diaphragm

Nephrotic Syndrome (>3.5 gms/d)

Nephrotic Syndrome (>3.5 gms/d)

Subepithelial Deposits

	Minimal Change	FSGS	Membranous
Demographic	Kids Cytokine trigger	Heroin, HIV, SCD Sclerosis = CKD	Planted Ag/IC Tumor, HBSAg, SLE
Special Notes	Rx: Steroid Responsive		

Best Rx for PSGN? A. Observation and Supportive Care

Steroids do not help

	Minimal Change	FSGS	Membranous
Demographic	Kids Cytokine trigger	Heroin, HIV, SCD Sclerosis = CKD	Planted Ag/IC Tumor, HBSAg, SLE
Special Notes	Rx: Steroid Responsive	HTN Hematuria (no casts) Elevation of Creatinine	

Proteinuria > 3.5 gms/day

	Minimal Change	FSGS	Membranous
Demographic	Kids Cytokine trigger	Heroin, HIV, SCD Sclerosis = CKD	Planted Ag/IC Tumor, HBSAg, SLE
Special Notes	Rx: Steroid Responsive	HTN Hematuria (no casts) Elevation of Creatinine	

Proteinuria > 3.5 gms/day

Insidious onset <u>Dx</u>: Anti-PLA₂ Aby

Part II. Nephrotic Disorders for USMLE Step One

Howard J. Sachs, MD

Associate Professor of Medicine UMass Medical School <u>www.12daysinmarch.com</u> E-mail: Howard@12daysinmarch.com