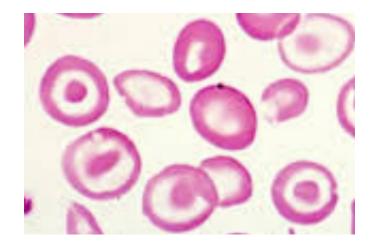
Heme Questions and Derivatives for the USMLE Step One Exam

Winter Storm Skylar Edition

Howard J. Sachs, MD Howard@12DaysinMarch.com www.12DaysinMarch.com Patient presents for routine preoperative evaluation prior to cataract sugery. In reviewing her data, you note the following:

Test	Result		
White Blood Cell Count	7.2 th/mm3		
Red Blood Cell Count	5.86 mil/mm3		
Hemoglobin	11.9 g/dL		
Hematocit	38.5 %		
MCV	38.5 % 65.7 fl		
MCH	20.3 pg		
MCHC	30.8 g/dL		
RDW	19.9 %		
Platelet count	420 th/mm3		


The patient states she's always been anemic.

What would expect to find on her blood smear?

- 1. Target cells
- 2. Red cells with basophilic remnant
- 3. Crescent shaped cells
- 4. Red cells with cytoplasmic inclusions
- 5. Microcytic cells without central pallor

MCHC, normal 33-36 g/dL

Test	Result		
White Blood Cell Count	7.2 th/mm3		
Red Blood Cell Count	5.86 mil/mm3		
Hemoglobin	11.9 g/dL		
Hematocit	38.5 %		
MCV	38.5 % 65.7 fl		
MCH	20.3 pg		
MCHC	30.8 g/dL		
RDW	19.9 %		
Platelet count	420 th/mm3		

The patient states she's always been anemic. Smear shown.

A hemoglobin electrophoresis is obtained. Result: normal pattern.

Which of the following diagnoses are most likely?

- 1. α -thalassemia
- 2. β -thalassemia
- 3. Sickle cell trait
- 4. Iron deficency anemia

Patient presents for routine preoperative evaluation prior to cataract sugery. In reviewing her data, you note the following:

Test	Result	
White Blood Cell Count	7.2 th/mm3	
Red Blood Cell Count	5.86 mil/mm3	
Hemoglobin	11.9 g/dL	
Hematocit	38.5 %	
MCV	65.7 fl	
MCH	20.3 pg	
MCHC	30.8 g/dL	
RDW	19.9 %	
Platelet count	420 th/mm3	

The patient states she's always been anemic.

Patient presents for routine preoperative evaluation prior to cataract sugery. In reviewing her data, you note the following:

Test	Result	
White Blood Cell Count	7.2 th/mm3	
Red Blood Cell Count	5.86 mil/mm3	
Hemoglobin	11.9 g/dL	
Hematocit	38.5 %	
MCV	65.7 fl	
MCH	20.3 pg	
MCHC	30.8 g/dL	
RDW	19.9 %	
Platelet count	420 th/mm3	

The patient states she's always been anemic.

What would expect to find on her blood smear?

Differential Diagnosis of Microcytosis with Hypochromic Cells (low MCHC):
Iron Deficiency
 Anemia of Chronic Disease
 Thalassemia

Differential Diagnosis of Microcytosis with Hypochromic Cells (low MCHC):

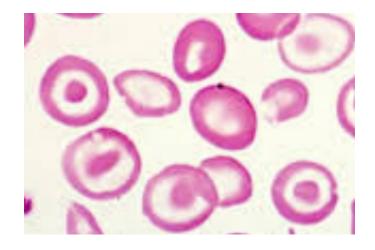
- Iron Deficiency
- Anemia of Chronic Disease
- Thalassemia

Test	Result	
White Blood Cell Count	7.2 th/mm3	
Red Blood Cell Count	5.86 mil/mm3	
Hemoglobin	11.9 g/dL	
Hematocit	38.5 %	
MCV	65.7 fl	
MCH	20.3 pg	
MCHC	30.8 g/dL	
RDW	19.9 %	
Platelet count	420 th/mm3	

What would expect to find on her blood smear?

- 1. Target cells: membrane in excess of hemoglobin (defective globin)
- 2. <u>Red cells with basophilic remnant</u>: Howell-Jolly Body (asplenia)
- 3. Crescent shaped cells: SCD
- 4. <u>Red cells with cytoplasmic inclusions</u>: Heinz bodies \rightarrow Bite Cells
- 5. <u>Microcytic cells without central pallor</u>: Spherocytes

Patient presents for routine preoperative evaluation prior to cataract sugery. In reviewing her data, you note the following:


Test	Result
White Blood Cell Count	7.2 th/mm3
Red Blood Cell Count	5.86 mil/mm3
Hemoglobin	11.9 g/dL
Hematocit	38.5 %
MCV	65.7 fl
MCH	20.3 pg
MCHC	30.8 g/dL
RDW	19.9 %
Platelet count	420 th/mm3

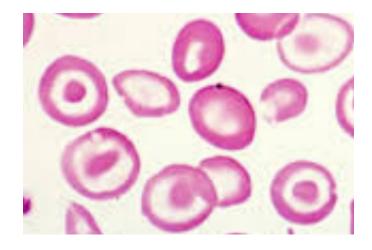
1. Target cells: membrane in excess of hemoglobin (defective globin)

Differential Diagnosis of Microcytosis with Hypochromic Cells (low MCHC):

- Iron Deficiency
- Anemia of Chronic Disease
- Thalassemia
- Longstanding nature and failure to mention a condition associated with chronic blood loss. Further, that MCV is very low with only minor anemia.
- Devoid of inflammatory signs or symptoms; Very low MCV.
- Thalassemia most likely dx

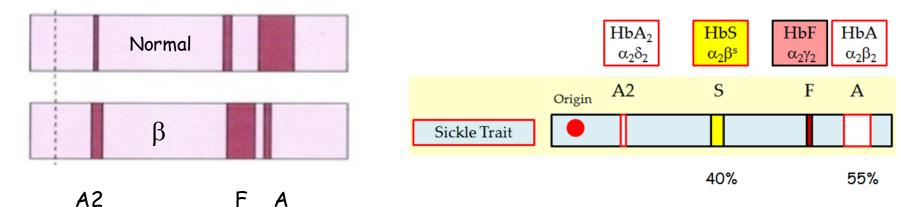
Test	Result		
White Blood Cell Count	7.2 th/mm3		
Red Blood Cell Count	5.86 mil/mm3		
Hemoglobin	11.9 g/dL		
Hematocit	38.5 %		
MCV	38.5 % 65.7 fl		
MCH	20.3 pg		
MCHC	30.8 g/dL		
RDW	19.9 %		
Platelet count	420 th/mm3		

The patient states she's always been anemic. Smear shown.


A hemoglobin electrophoresis is obtained. <u>Result</u>: normal pattern.

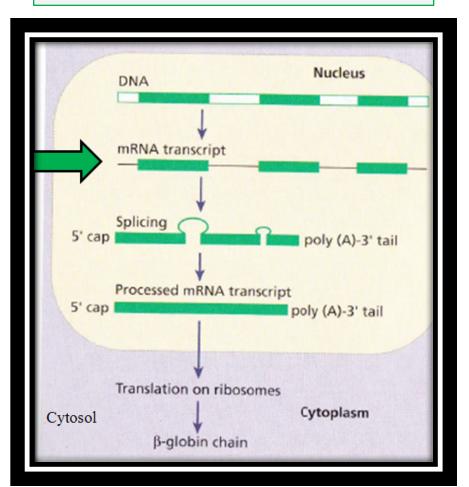
Which of the following diagnoses are most likely?

- 1. α -thalassemia: imbalance with normal β -chains
- 2. <u> β -thalassemia</u>: defective $\beta \rightarrow$ other Hgb (A2- δ ; F γ)
- 3. <u>Sickle cell trait</u>: Hgb S (abnormal electrophoresis)
- 4. Iron deficency anemia: iron studies, not phoresis.

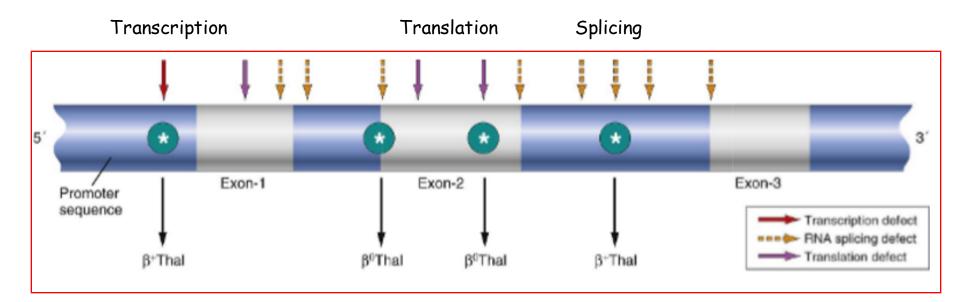


Test	Result		
White Blood Cell Count	7.2 th/mm3		
Red Blood Cell Count	5.86 mil/mm3		
Hemoglobin	11.9 g/dL		
Hematocit	38.5 %		
MCV	65.7 fl		
MCH	20.3 pg		
MCHC	30.8 g/dL		
RDW	19.9 %		
Platelet count	420 th/mm3		

A hemoglobin electrophoresis is obtained. <u>Result</u>: normal pattern.

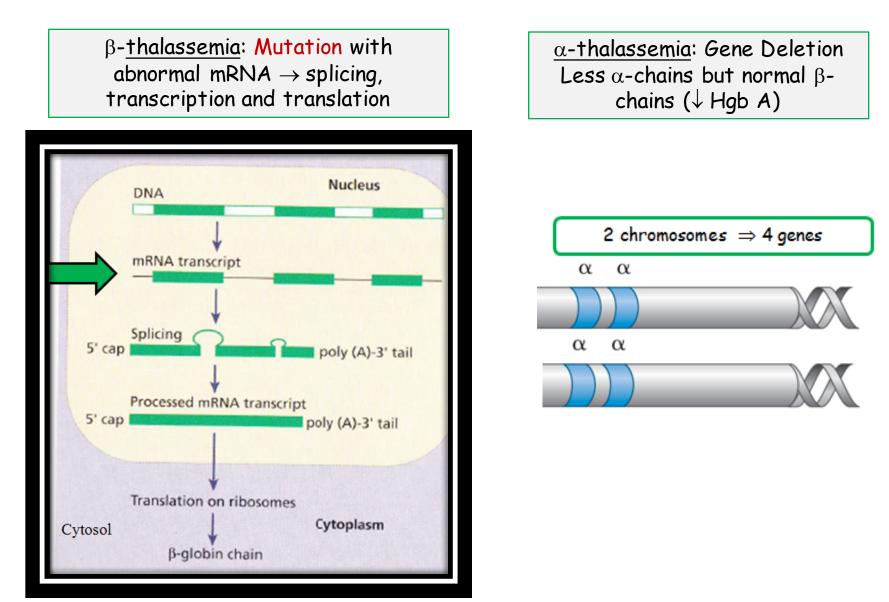

- 1. α -thalassemia: imbalance with normal β -chains
- 2. <u> β -thalassemia</u>: defective $\beta \rightarrow$ other Hgb (A2- δ ; F γ)
- 3. Sickle cell trait: Hgb S (abnormal electrophoresis)
- 4. Iron deficency anemia: iron studies, not phoresis.

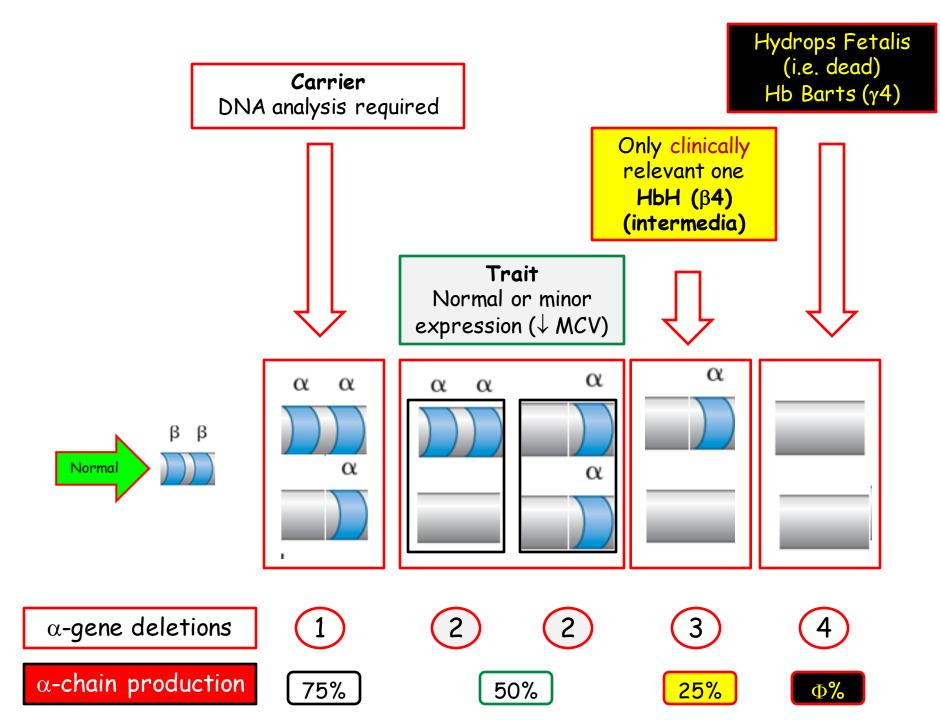
1. α -thalassemia: imbalance with normal β -chains


2. <u> β -thalassemia</u>: defective $\beta \rightarrow$ other Hgb (A2- δ ; F - γ)

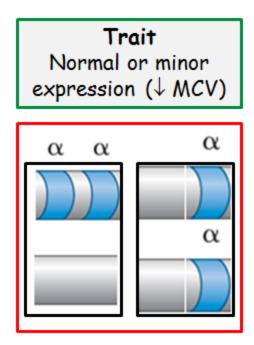
 β -<u>thalassemia</u>: Mutation with abnormal mRNA \rightarrow splicing, transcription and translation

β -Thalassemia = Point Mutatation

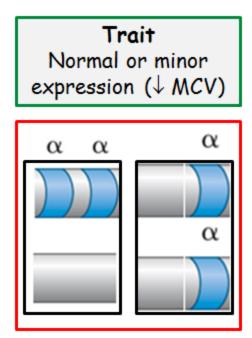

Whereas α -thalassemia is a disease of gene deletions, β -thalassemia is a disease of gene mutations (mRNA splicing, transcription, translation).


<u>Point</u>: 100's of mutations lead to varying degrees of β -chain synthesis. Clinical manifestations of β -thalassemia depend on degree of <u>residual chain synthesis</u>.

<u>Implication</u>: imbalance between α - and β -chain synthesis

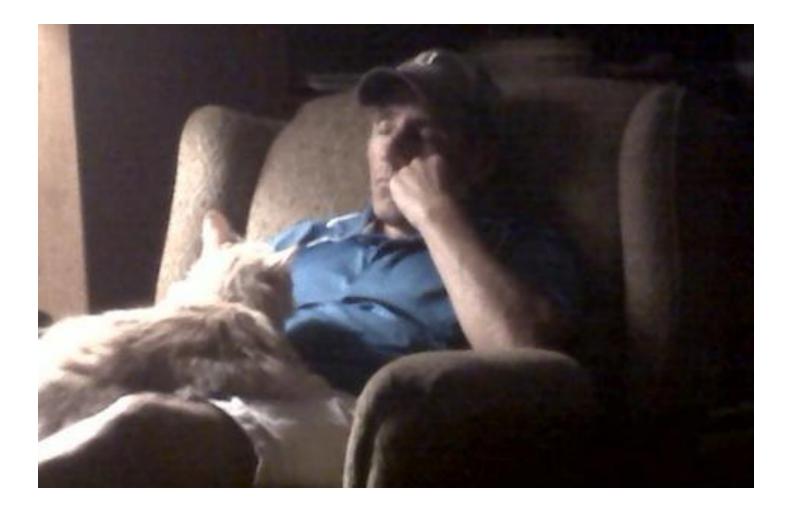

1. α -thalassemia: imbalance with normal β -chains

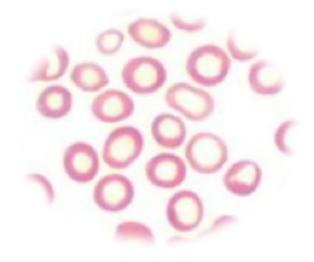
2. <u> β -thalassemia</u>: defective $\beta \rightarrow$ other Hgb (A2- δ ; F - γ)


Test	Result		
White Blood Cell Count	7.2 th/mm3		
Red Blood Cell Count	5.86 mil/mm3		
Hemoglobin	11.9 g/dL		
Hematocit	38.5 %		
MCV	65.7 fl		
MCH	20.3 pg		
MCHC	30.8 g/dL		
RDW	19.9 %		
Platelet count	420 th/mm3		

Microcytosis Normal Hemoglobin Electrophoresis

Compatible with $\alpha\mbox{-thalassemia trait}$

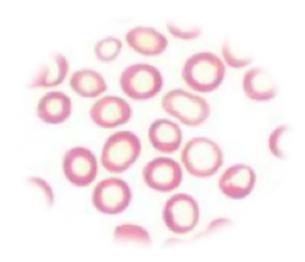

Test	Result		
White Blood Cell Count	7.2 th/mm3		
Red Blood Cell Count	5.86 mil/mm3		
Hemoglobin	11.9 g/dL		
Hematocit	38.5 %		
MCV	65.7 fl		
MCH	20.3 pg		
MCHC	30.8 g/dL		
RDW	19.9 %		
Platelet count	420 th/mm3		


Microcytosis Normal Hemoglobin Electrophoresis

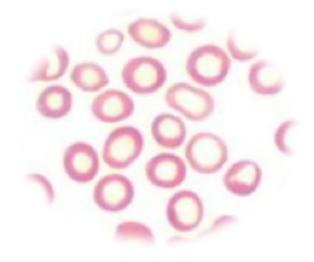
Compatible with $\alpha\mbox{-thalassemia trait}$

	Ref Range & Units			Ref Range & Units	
Ferritin 11.0 - 306.0 ng/mL	22.0	Iron Saturation	20 - 50 %	36	
		🗠 Iron	28 - 170 ug/dL	121	
			Manual Transferrin	202 - 336 mg/dL	271
			 Total Iron Binding Capacity 	255 - 450 ug/dL	339

	-	
-** NA	135 - 145 mmol/L	138
-** K	3.5 - 5.3 mmol/L	3.9
-* CI	97 - 110 mmol/L	100
-** CO2	24 - 32 mmol/L	27
-** BUN	7 - 23 mg/dL	13
-* Creatinine	0.60 - 1.30 mg/dL	0.95
-* Glucose	70 - 99 mg/dL	94
-* Calcium	8.7 - 10.7 mg/dL	9.5



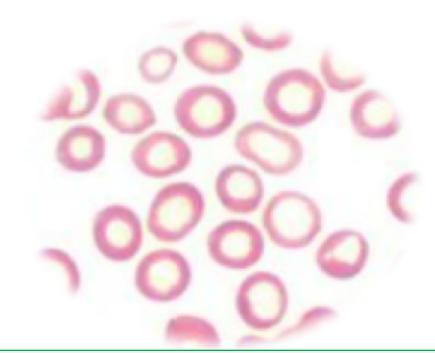
- 1. Enzyme deficiency
- 2. Abnormality of membrane cytoskeleton
- 3. Point mutation in the β -globulin chain
- 4. Portal hypertension
- 5. Failure of DNA synthesis
- 6. Failure of heme synthesis


65 y.o. alcoholic from Morocco presents to ER with episode of midepigastric pain. She reports 6 month history of diarrhea. PE: 110/80; HR 108 Cor: S1S2 normal, no JVD or murmur. Abd: mild tenderness; Neuro: ataxic gait. Ext: 1+ bilateral edema HCT 32%. Smear is shown. Which of the following studies would be most likely to identify the pathogenesis of her anemia?

	Ref Range & Units	Value
Erythropoietin	2.6 - 18.5 mlU/mL	147.5 (H)

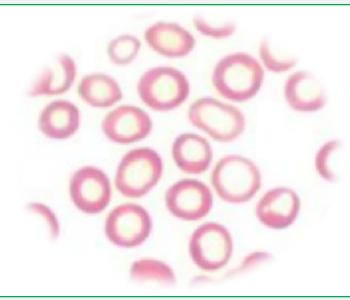
- 1. G6PD level
- 2. Hemoglobin electrophoresis
- 3. Osmotic fragility test
- 4. IV secretin stimulation test
- 5. Liver biopsy
- 6. Bone marrow aspirate
- 7. Colonoscopy



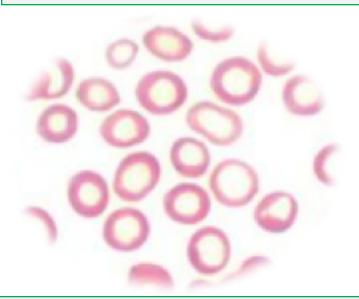

	-	
-** NA	135 - 145 mmol/L	138
-** K	3.5 - 5.3 mmol/L	3.9
-* CI	97 - 110 mmol/L	100
-** CO2	24 - 32 mmol/L	27
-** BUN	7 - 23 mg/dL	13
-* Creatinine	0.60 - 1.30 mg/dL	0.95
-* Glucose	70 - 99 mg/dL	94
-* Calcium	8.7 - 10.7 mg/dL	9.5

- 1. Enzyme deficiency
- 2. Abnormality of membrane cytoskeleton
- 3. Point mutation in the β -globulin chain
- 4. Portal hypertension
- 5. Failure of DNA synthesis
- 6. Failure of heme synthesis

	-	
-~ NA	135 - 145 mmol/L	138
-** K	3.5 - 5.3 mmol/L	3.9
CI	97 - 110 mmol/L	100
-** CO2	24 - 32 mmol/L	27
BUN	7 - 23 mg/dL	13
-** Creatinine	0.60 - 1.30 mg/dL	0.95
-* Glucose	70 - 99 mg/dL	94
Calcium	8.7 - 10.7 mg/dL	9.5



Differential Diagnosis of Microcytosis with Hypochromic Cells (low MCHC):


- Iron Deficiency
- Anemia of Chronic Disease
- Thalassemia

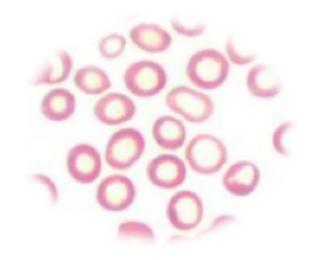
- 1. Enzyme deficiency
- 2. Abnormality of membrane cytoskeleton
- 3. Point mutation in the β -globulin chain
- 4. Portal hypertension
- 5. Failure of DNA synthesis
- 6. Failure of heme synthesis

- 1. Enzyme deficiency: G6PD
- 2. Abnormality of membrane cytoskeleton: Spherocytosis
- 3. Point mutation in the β -globulin chain: Thalassemia
- 4. Portal hypertension: Cytopenia
- 5. Failure of DNA synthesis: B-12/Folate deficiency
- 6. Failure of heme synthesis: Iron Deficiency microcytic, hypochromic cells

Data » PE » Verbiage

- 1. Enzyme deficiency: G6PD
- 2. Abnormality of membrane cytoskeleton: Spherocytosis
- 3. Point mutation in the β -globulin chain: Thalassemia
- 4. Portal hypertension: Cytopenia
- 5. Failure of DNA synthesis: B-12/Folate deficiency
- 6. Failure of heme synthesis: Iron Deficiency microcytic, hypochromic cells

65 y.o. alcoholic from Morocco presents to ER with episode of midepigastric pain. She reports 6 month history of diarrhea. PE: 110/80; HR 108 Cor: S1S2 normal, no JVD or murmur. Abd: mild tenderness; Neuro: ataxic gait. Ext: 1+ bilateral edema HCT 32%. Smear is shown. Which of the following studies would be most likely to identify the pathogenesis of her anemia?

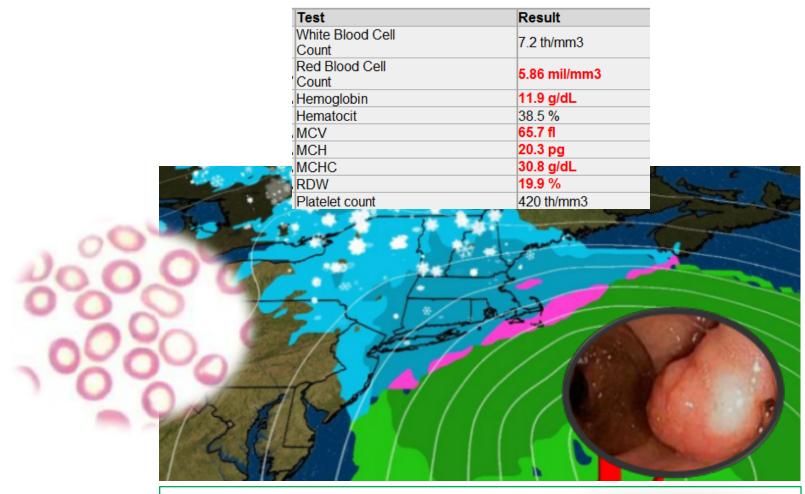

Erythropoietin

Ref Range & Units 2.6 - 18.5 mIU/mL Value 147.5 (H)

Oxygen Content (CaO2) = (Hgb x 1.34) x O2 sat (100% = 1.0) + PaO2 (bubkus)

65 y.o. alcoholic from Morocco presents to ER with episode of midepigastric pain. She reports 6 month history of diarrhea. PE: 110/80; HR 108 Cor: S1S2 normal, no JVD or murmur. Abd: mild tenderness; Neuro: ataxic gait. Ext: 1+ bilateral edema HCT 32%. Smear is shown. Which of the following studies would be most likely to identify the

pathogenesis of her anemia?


- 1. G6PD level
- 2. Hemoglobin electrophoresis
- 3. Osmotic fragility test
- 4. IV secretin stimulation test
- 5. Liver biopsy
- 6. Bone marrow aspirate
- 7. Colonoscopy

65 y.o. alcoholic from Morocco presents to ER with episode of midepigastric pain. She reports 6 month history of diarrhea. PE: 110/80; HR 108 Cor: S1S2 normal, no JVD or murmur. Abd: mild tenderness; Neuro: ataxic gait. Ext: 1+ bilateral edema HCT 32%. Smear is shown. Which of the following studies would be most likely to identify the pathogenesis of her anemia?

- 1. G6PD level
- 2. Hemoglobin electrophoresis
- 3. Osmotic fragility test
- 4. IV secretin stimulation test
- 5. Liver biopsy
- 6. Bone marrow aspirate
- 7. Colonoscopy

Winter Storm Skylar Edition

Howard J. Sachs, MD Howard@12DaysinMarch.com www.12DaysinMarch.com