Hepatic Encephalopathy

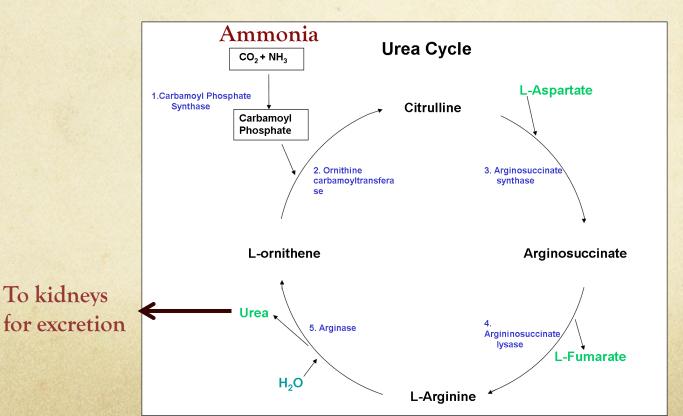
John Barber UMassMedical Student, Class of 2019

www.12DaysinMarch.com

- Overview
- Normal Physiology
- Pathology
- Symptoms
- O Diagnosis
- Treatment

Overview

- Ammonia (NH₃) is a byproduct of amino acid and nitrogenous waste breakdown.
- NH₃ levels in circulation are controlled by hepatic metabolism and renal excretion.
- Liver disease can impair NH₃ metabolism and lead to elevated blood concentrations.
- Excess NH₃ levels in our blood can cross the Bloodbrain-barrier (BBB) and cause encephalopathy.


- Overview
- Normal Physiology
- Pathology
- Symptoms
- Diagnosis
- Treatment

Physiology: NH₃ Production

- Ammonia (NH₃) is a byproduct of amino acid and nitrogenous waste breakdown. Ammonia can be generated from exogenous and endogenous sources including:
 - Degradation of proteins in our diet by colonic bacteria
 - Gluconeogenesis: A byproduct of AA breakdown.
 - GI Bleeding: Protein in our blood is broken down => Increased NH₃ levels
 - Severe Constipation: Reduced excretion of ammonia => Increased absorption
- The NH₃ produced by our gut bacteria is absorbed into the portal system and metabolized by the liver in the urea cycle.
 - Note: Any ammonium (NH_4^+) generated in our colon is not able to be absorbed, it is trapped in the lumen and excreted.

Physiology: NH₃ Metabolism

- Ammonia taken up into the portal system is metabolized in the liver via the urea cycle.
- The urea is put into circulation and excreted by the kidneys.
 - Note: Carbamoyl Phosphate Synthase I is the rate-limiting step of the urea cycle.

- Overview
- Normal Physiology
- Pathology
- Symptoms
- O Diagnosis
- Treatment

Pathology: Impaired Metabolism & Increased [NH₃]

- Hepatic Encephalopathy is caused by an acute exacerbation of an already dysfunctional liver.
 - Underlying liver pathology (e.g., due to chronic HCV infection or alcoholic cirrhosis) impairs hepatic processing of ammonia.
 - An acute event (e.g., infection, alcoholic binge, GI bleeding, severe constipation) leads to increased [NH₃] and symptomatic Hepatic Encephalopathy.

Pathology: CNS Effects

- Elevated NH₃ levels in the blood cross the BBB and lead to increased levels of glutamate.
 - $NH_3 + \alpha$ Ketoglutarate \rightarrow Glutamate
- Increased levels of glutamate in astrocytes increases their osmotic pressure and draws fluid into the cell.
 - This leads to progressively worsening cerebral edema and associated symptoms.
- In addition to symptoms generated by the cerebral edema, the elevated levels of glutamate may itself directly contribute to altered CNS function.

- Overview
- Normal Physiology
- Pathology
- Symptoms
- Diagnosis
- Treatment

Signs & Symptoms

- A patient may present with a number of varied signs and symptoms:
 - CNS symptoms:
 - Disorientation
 - Lethargy
 - O Personality Changes
 - Coma and Death: possible if cerebral edema is severe
 - Signs of liver failure may also be present:
 - O Jaundice
 - O Scleral Icterus
 - Ascites
 - Varices (e.g., esophageal, caput medusae)
 - O Peripheral Edema

- Overview
- Normal Physiology
- Pathology
- Symptoms
- Diagnosis
- Treatment

Diagnosis

- Liver disease must be confirmed for a diagnosis of Hepatic Encephalopathy as other diseases may cause similar CNS symptoms.
 - E.g., Uremic encephalopathy caused by renal pathology => Decreased excretion of nitrogenous waste products may present with similarly altered cognitive function.
- Confirmation may include:
 - o LFTs
 - Imaging (e.g., ultrasound or CT)
 - Liver biopsy
- Would expect elevated levels of NH_3 in circulation.
 - Note: NH₃ levels may not directly correlate with severity of symptoms

- Overview
- Normal Physiology
- Pathology
- Symptoms
- Diagnosis
- Treatment

Treatment

- Treatment is focused on reducing NH_3 production and absorption in the colon.
 - **Rifaximin / Neomycin:** These antibiotics kill the colonic bacteria that break down protein in our diet (or from GI bleeding) thereby preventing NH₃ production.
 - Lactulose: A mainstay of treatment, lactulose acidifies the colon, trapping NH_3 as NH_4^+ and increasing fecal excretion.
 - Also used as an osmotic laxative, Lactulose can be particularly beneficial in a patient with constipation.